Skip to main content

Module 3: Deep Learning and its Applications

Deep Learning Architectures

                  • August 28, 2021
                      1. Gradient descent and its variants, 
                      2. Log likelihood Interpretation of Linear Regression, 
                      3. Logistic Regression - Binary classification model, 
                      4. Sigmoid or logistic function, Loss function, Binary cross entropy, 
                      5. Logistic Regression - Multiclass classification
                      6. Activation Function - Softmax Function
                      7. Feedforward Neural Network
                      8. Rectified Linear Units(ReLU)
                      9. Leaky ReLU
                      10. Hyperbolic tangent function
                      11. Chain Rule of Calculus
                      12. Backpropagation
                  • September 04, 2021
                      1. Recap of Backpropagation, 
                      2. Relu and Softmax Activation Function, 
                      3. L2 Regularization, 
                      4. Early stopping, 
                      5. Dropouts
                      6. Validation Set and Validation Error
                      7. Classical Features and Deep Features
                      8. Batch Normalization
                      9. Stochastic Gradient Descent
                      10. Momentum based optimization
                  • September 12, 2021
                  • September 12, 2021
                        1. Optimization - Momentum, Adam, Adagrad, RMSprop;
                        2. Batch Normalization;
                        3. 1D Convolution;
                        4. 2D Convolution;
                        5. Convolutional Layer - Filter, Stride
                        6. Zero Padding
                        7. Max Pooling
                          1. Recurrent Neural Networks (RNN);
                          2. First Order Recurrence - Hidden Layer;
                          3. Why do need Recurrent Models;
                          4. Error Back Propagation;
                          5. Backpropagation through time
                          6. Long term dependency issue - Vanishing Gradients
                          7. Tanh Activation Function Long Short Term Menory (LSTM)
                          8. Recurrent networks - Single Input Multiple Outputs
                          9. Bi-directional Netorks
                          10. Sequence to Sequence Mapping Networks
                            1. RNN;
                            2. Attention Encoder Decoder Model
                            3. Attention in LSTM networks;
                            4. Natural Language Processing – Representation of Text
                            5. Word2vec models as text representations - continuous bag-of-words and skip-gram model
                            6. Word2vec visualization
                            7. Deep Neural Network-Intution
                            8. CNN for MNIST
                            9. Understanding CNN's using CNN's
                            10. Problem of Underfit and Overfit
                            11. Regularization in Deep Network
                            12. Batch Normalization"
                            1. ASR – Statistical Speech Recognition
                            2. Probabilistic Approach- Statistical Sequence Recognition
                            3. Acoustic Model – State based modeling approach – HMM(Hidden markov model);
                            4. HMM decoding
                            5. Word Error Rate/Character Error
                            6. ASR – DNN/HMM Hybrid Model
                            7. ASR – TDNN(Time Delay Neural Network)
                            8. RNN
                            9. Training a RNN language model
                            10. Evaluating language model
                            11. ASR -End to end approach
                            12. NMT(Neural Machine Translation)
                            13. Greedy decoding
                            14. Seq-to-seq with attention
                            15. Self attention
                            16. The transformer encoder-decoder
                            17. CTC(Connectionist Temporal Classification)
                            18. Fully convolutional speech recognition
                            19. Speech transformer
                            20. Wav2vec
                            21. Autoregressive Predictive coding
                            1. Concatenative TTS;
                            2. Concatenative Synthesis
                            3. Three stage pipeline
                            4. Vocoder
                            5. Source filter model
                            6. Maximum likelihood estimation of spectral model
                            7. Introduction of auditory frequency scale
                            8. Mel Generalized Ceptral Analysis Advanced Vocoder and excitation models
                            9. Speech Signal Processing Toolkit
                            10. MELP Style Mixed Excitation
                            11. Autoregressive Model - core idea
                            12. Autoregressive Model - wavenet
                            13. STRAIGHT
                            14. Excitation Signal Generation in STRAIGHT
                            15. Griffin Lim Algorithm
                            16. Naive Model
                            17. Non-autoregressive model – melGAN
                            18. Normalizing flow
                            19. Neural Source filter model
                            20. SFNet
                            21. Text Front End
                            22. Prosodic Production prediction
                            23. Pronunciation prediction
                            24. Style Information
                            25. Contextual Information
                            26. HMM Neural Network
                            27. Tacotran
                            28. Acoustic Model
                            29. Non-RNN Acoustic Model
                            30. Robust Acoustic Model
                            31. Non-autoregressive acoustic model
                            32. Accurate Alignment
                            33. End to end adversial text to speech
                            1. CNN Architectures - Brief Overview;
                            2. AlexNet, VGG16, VGG19
                            3. ResNet,Self-Supervised Learning;
                            4. Contrastive Learning
                            5. Image Augmentations
                            6. A simple Framework for Contrastive Learning of Visual Representation
                            7. Contrastive Loss Function
                            8. Image Segmentation - UNet
                            9. Performance Metrics - Intersection over Union
                            10. DeepLab,Bilinear Interpolation
                • October 30, 2021
                    1. Computer Vision and Semantic Gap
                    2. Conventional vs Deep Vision
                    3. AlexNet
                    4. FCNN
                    5. Object Detection (RCNNs)
                    6. Object Detection (Faster RCNN + ResNet-101)
                    7. Semantic Object Segmentation
                    8. RPN,VGG,GoogleNet,RCNN,YOLO
              • November 06, 2021
                    1. GAN’s
                    2. Spatial Localization Detection
                    3. RCNN
                    4. Fast R CNN- Region Proposal Network
                    5. YOLO Detection as Regression
                    6. Adversial Robustness of Deep Models
              • November 13, 2021
                    1. Image Captioning
                    2. Convolutional Feature Extractor
                    3. Model : Attention
                    4. Yolo V1, V2, V3
              • November 27, 2021
                    1. Introduction to NLP and its applications
                    2. Sentence Classification
                    3. Textual Entailment
                    4. Question Answering
                    5. Self Supervised Learning
                    6. Text Preprocessing
                    7. Tokenization
                    8. Filtering Stop Words
                    9. Remove Punctuations
                    10. Stemming and Lemmatization
                    11. Additional Text Processing
                    12. Distributed Word Representations
                    13. Text Representation
                    14. BOW (Bag of words)
                    15. Cosine Similarity
                    16. Word2vec
                    17. Skip-gram model
                    18. GloVe
                    19. fasText
                    20. Sentence Representation
                    21. Deep Averaging Network
              • December 04, 2021
                    1. Language Model
                    2. Statistical Language Model
                    3. N-gram Language Model
                    4. Sentence classification problem
                    5. Neural Machine Translation
                    6. Training on RNN Language Model
                    7. Generating Text with a RNN Language Model
                    8. Evaluating a Language Model
                    9. Bidirectional RNN
                    10. Embeddings from Language Model
                    11. Gated Recurrent Unit (GRU)
                    12. Convolutional Neural Netorks
                    13. CNN for Sentence Representation
                    14. Single Layer CNN for Sentence Classification
                    15. CNN for Machine Translation
                    16. Combination of CNN and RNN for paragraph Classification
                    17. CNN for Part-of-Speech Tagging
              • December 11, 2021
                    1. Attention Mechanism
                    2. GRU Network
                    3. Data Fitting Problem
                    4. Bidirectional RNN
                    5. Attention mechanism for seq-to-seq problem
                    6. Self-attention
                    7. Transformers
                    8. Encoder
                    9. Multi head attention
                    10. Positional encodings
                    11. Transformer encoder for classification
              • December 18, 2021
                    1. Backpropagation through time
                    2. Vanishing Gradient
                    3. GPT(Generative Pretrained Model)
                    4. Formatting inputs for fine-tuning task
                    5. English grammer correctioin using gpt 3
                    6. Bytepair tokenizer
                    7. Wordpiece tokenizer
                    8. BERT
                    9. BERT- Masked Language Model
                    10. BERT Variants
                    11. ine tuning bert on different task
              • January 22, 2022
                    1. First Half: Techniques for efficient hardware inference
                    2. Separable Convolution
                    3. SparsityPruning Neural Networks
                    4. Recovery Accuracy
                    5. Pruning RNN and LSTM
                    6. Load balance aware pruning
                    7. Bitmask Compression
                    8. Number Representation
                    9. Quantization
                    10. AlexNet on ImageNet Classification
                    11. Trained Quantization
                    12. Huffman Coding
                    13. Ternary Net
                    14. Dataflows
                    15. Reduced Precision Networks
                    16. Non-linear quantization
                    17. Google TPU generation
                    18. Edge TPU
                    19. Machine Learning for IoT edge computing
                    20. Power Constraints
                    21. ML Hardware Tradeoffs
                    22. CPU and GPUF
                    23. PGA vs ASIC Chip 1(Analog ML)
                    24. VLSI Implementation: Weighted Average Circuit
                    25. Memristor
                    26. Microcontrollers
                    27. MCU(Cortex Series)
                    28. tinyML hardware
              • January 30, 2022
                    1. Machine Learning on embedded system
                    2. Attributes
                    3. Framework
                    4. Design
                    5. MCU Hardware
                    6. ESP-EYE Dev kit
                    7. Arduino Nano 33 BLE
                    8. tinyML software frameworks
                    9. TensorflowLite Micro
                    10. TensorflowLite Micro NN Ops
                    11. TensorflowLite Conversion : Keras Model
                    12. TensorflowLite Model Optimization
                    13. Post Training Interger Quantization
                    14. Quantization Aware Training
                    15. Pruning
                    16. Weight Clustering
                    17. TFLM Structure
                    18. Installation
                    19. Hello World TensorflowLite Micro Screencast
                    20. Helloworld TFLM Components
              • February 05, 2022
                    1. tinyML Deployment
                    2. Keyword spotting application
                    3. Audio sensor input
                    4. KWS dataset - Google speech command
                    5. Data Preprocessing - MFCC
                    6. Cochlea based filtering
                    7. tinyConv model
                    8. KWS components
                    9. Keyword spotting code demo
                    10. Custom model for TFLM framework
                    11. Visual fake words - Person detection application
                    12. Person detection metrics
                    13. Person detection model
                    14. person detection components
                    15. Person detection code demo
                    16. Sensor ecosystem
                    17. Gesture recognition demo